

Biomechanics of recumbent handcycling during high and moderate intensity exercise

Kellie M. Halloran¹, Joseph Peters^{2,3}, Michael Focht¹, Ian Rice⁴, Mariana E. Kersh^{1,3,5}

¹Dept. of Mechanical Science and Engineering, ²Disability Resources and Educational Services, ³Beckman Institute for Advanced Science and Technology, ⁴Dept. of Kinesiology and Community Health, ⁵Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana IL

1. Clinical motivation

- People with spinal cord injuries (PwSCI) are at high risk for cardiovascular disease (CVD)¹, and exercise is recommended to reduce CVD risk
- exercise^{2,3}

Data collection:

180° (360°)

Joint Angles:

Plane of Elevation

Elevation

in HIIT than MICT at TPs 1,

- Segment kinematics recorded with motion capture (10 camera, Vicon)
- Acromion marker cluster used for scapular kinematics^{6,7}
- Handle instrumented with load cell used to collect kinetics

Musculoskeletal modeling:

- Wu shoulder model⁸ scaled to each participant (OpenSim)
- Calculated joint angles (inverse kinematics) and torques (inverse dynamics)

Data reduction and analysis:

- Kinematics: smoothed (moving average, window size = 0.25*n) and filtered (Butterworth, $\omega_n = 10$ Hz)
- Kinetics: filtered (Butterworth, $\omega_n = 8$ Hz)
- Minimum and maximum joint angles, mean joint torques compared between and during exercise
- If normally distributed: paired t-test. Otherwise, Wilcoxon signed-ranks test ($\alpha = 0.05$)

- Higher in HIIT compared
- Largest increase found in elevation torque
- Mean plane and rotation increased during MICT
- Mean elevation increased during HIIT

* p<0.05, **p<0.01, ***p<0.001

* * ** 1.9 Nm

5. Conclusions

- Different rotation kinematics in HIIT could be driving torque differences
- Higher torques in HIIT suggest higher rotator cuff strain, especially in the supraspinatus (shoulder elevator)
- Changes within exercise protocols indicate different fatigue states (MICT: changes in plane and rotation torques, HIIT: changes in elevation torque), although minimal
- Need to quantify individual soft tissue loads more thoroughly to understand rotator cuff injury risk

Limitations: Athletic population may not reflect general SCI population Future study: Examine muscle forces using collected EMG data and static optimization of musculoskeletal model

References

[1] Nash+, 2007, Arch Phys Med Rehab [2] Subbarao+, 1995, J Spinal Cord Med [3] Jahanian+, 2020, J Spinal Cord Med [4] Nightingale+, 2017, Arch Phys Med Rehab [5] Arnet+, 2012, J Rehab Med [6] Warner+, 2012, Hum Mov Sci [7] Bourne+, 2009, J Biomech Engr [8] Wu+, 2016, *J Biomech.* Some figures created with BioRender.com

Acknowledgements

Griffin Sipes, Danielle Siegal, Prof. David Ackland **Funding:** National Science Foundation

