
 Estimating hand reaction forces from arm segment accelerations during handcycle propulsion using machine learning

Griffin C. Sipes ${ }^{1}$, Kellie M. Halloran ${ }^{1}$, Sanmi Koyejo ${ }^{2}$, Ian Rice ${ }^{3}$, Mariana E. Kersh ${ }^{1,4,5}$

${ }^{1}$ Dept. of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana IL ${ }^{2}$ Dept. of Computer Science, Stanford University, Stanford CA
${ }^{3}$ Dept. of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana IL
${ }^{4}$ Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana IL
${ }^{5}$ Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana IL

1. Clinical motivation

- Persons with spinal cord injuries (PwSCls) are $\sim 5 x$ more likely to have cardiovascular disease than able-bodied individuals ${ }^{1}$ due to low physical activity ${ }^{2}$
- Exercise can help prevent cardiovascular disease but needs to be quantified
- There are no commercially available devices to measure forces during physical activity in PwSCls
Accelerations from inertial measurement units (IMUs) can estimate ground reaction forces ${ }^{3-5}$ using machine learning

20 min of propulsion in two training modes: moderate (MICT) and high intensity (HIIT)

- Hand forces/moments measured using Instrumented handle

- Segment accelerations and velocities calculated using inverse kinematics

$$
a=\left(\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right), \omega=\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

3. Methods

Data Preprocessing:
Dataset shuffled and split into standardized subsets

Model Architecture: Effect of segment used compared with 4 models
2-layer BiLSTM network

- 200 nodes/layer
- 40\% dropout after each layer

Training Parameters:

- Loss function: MSE
- Optimizer: Adam
- Learning rate: 0.0003

Data Reduction and Analysis:
Prediction error calculated on test set - Error compared across model, exercise type, and output variable using Wilcoxon-Signed Rank Kruskal-Wallace tests

4. Key findings

- Individual segment data equally predicts kinetics
- Lowest absolute errors in $\mathrm{F}_{\mathrm{y}}(21 \%)$ and $\mathrm{F}_{\mathrm{x}}(29 \%)$; $F_{z}=73 \%$

- Lowest absolute errors in $\mathrm{T}_{\mathrm{x}}(20 \%)$ and $\mathrm{T}_{\mathrm{y}}(27 \%)$; $\mathrm{T}_{\mathrm{z}}=44 \%$

6. Conclusions

Tangential and radial forces $\left(F_{x}, F_{y}\right)$ are most relevant to propulsion and can be well predicted using machine learning
Kinetics can be predicted with IMU data from a single segment
Choice of arm segment does not significantly affect prediction performance Exercise type may need to be considered: kinetics during high intensity activities are more challenging to predict

A wrist-mounted IMU may be a viable method to evaluate different exercise intensity aimed to improve cardiovascular health.

Limitations: Inertial data calculated from motion capture
Future study: Will use a wrist IMU to predict hand reaction kinetics during manual wheelchair propulsion

References

[1] Myers+ Am J Phys Med Rehabil, 2007, [2] Gorgey + World J Orthop 2014, [3] Liu + Measurement, 2022, [4] Alcantara + PeerJ, 2022. [5] Hendry + Sensors, 2020. [6] Halloran $+J$ Biomech, 2022.

Acknowledgements

Joey Peters, Michael Focht, Danielle Siegal, Prof. David Ackland Funding: National Science Foundation

